Adult Human Primary Cardiomyocyte-Based Model for the Simultaneous Prediction of Drug-Induced Inotropic and Pro-arrhythmia Risk
نویسندگان
چکیده
Cardiac safety remains the leading cause of drug development discontinuation. We developed a human cardiomyocyte-based model that has the potential to provide a predictive preclinical approach for simultaneously predicting drug-induced inotropic and pro-arrhythmia risk. Methods: Adult human primary cardiomyocytes from ethically consented organ donors were used to measure contractility transients. We used measures of changes in contractility parameters as markers to infer both drug-induced inotropic effect (sarcomere shortening) and pro-arrhythmia (aftercontraction, AC); contractility escape (CE); time to 90% relaxation (TR90). We addressed the clinical relevance of this approach by evaluating the effects of 23 torsadogenic and 10 non-torsadogenic drugs. Each drug was tested separately at four multiples of the free effective therapeutic plasma concentration (fETPC). Results: Human cardiomyocyte-based model differentiated between torsadogenic and non-torsadogenic drugs. For example, dofetilide, a torsadogenic drug, caused ACs and increased TR90 starting at 10-fold the fETPC, while CE events were observed at the highest multiple of fETPC (100-fold). Verapamil, a non-torsadogenic drug, did not change TR90 and induced no AC or CE up to the highest multiple of fETPCs tested in this study (222-fold). When drug pro-arrhythmic activity was evaluated at 10-fold of the fETPC, AC parameter had excellent assay sensitivity and specificity values of 96 and 100%, respectively. This high predictivity supports the translational safety potential of this preparation and of the selected marker. The data demonstrate that human cardiomyocytes could also identify drugs associated with inotropic effects. hERG channel blockers, like dofetilide, had no effects on sarcomere shortening, while multi-ion channel blockers, like verapamil, inhibited sarcomere shortening. Conclusions: Isolated adult human primary cardiomyocytes can simultaneously predict risks associated with inotropic activity and pro-arrhythmia and may enable the generation of reliable and predictive data for assessing human cardiotoxicity at an early stage in drug discovery.
منابع مشابه
Ellagic acid improved arrhythmias induced by CaCL2 in the rat stress model
Objective: In ventricular arrhythmias, due to their free radical scavenging action, antioxidant agents are usually used in the treatment of cardiovascular disease. Since stress is considered as risk factor for increased mortality by causing malignant arrhythmias, the study was designed to evaluate the cardioprotective effects of ellagic acid (EA) on CaCl2-induced arrhythmias in rat stress model...
متن کاملEffect of gallic acid on electrophysiological properties and ventricular arrhythmia following chemical-induced arrhythmia in rat
Objective(s): Ventricular arrhythmias including ventricular tachycardia (VT) and ventricular fibrillation (VF) are the most important causes of mortality rate. Gallic acid (GA) has beneficial effects on cardiovascular diseases. The aim of this study was to evaluate the effects of GA on electrophysiological parameters such as QRS complex, heart rate (HR), PR interval pa...
متن کاملRefining the human iPSC-cardiomyocyte arrhythmic risk assessment model.
Human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) are capable of detecting drug-induced clinical arrhythmia, Torsade de Pointes (TdP), and QT prolongation. Efforts herein employ a broad set of structurally diverse drugs to optimize the predictive algorithm for applications in discovery toxicology and cardiac safety screening. The changes in the beat rhythm and rate of a conf...
متن کاملComparison of random and aligned PCL nanofibrous electrospun scaffolds on cardiomyocyte differentiation of human adipose-derived stem cells
Objective(s):Cardiomyocytes have small potentials for renovation and proliferation in adult life. The most challenging goal in the field of cardiovascular tissue engineering is the creation of an engineered heart muscle. Tissue engineering with a combination of stem cells and nanofibrous scaffolds has attracted interest with regard to Cardiomyocyte creation applications. Human adipose-derived s...
متن کاملI-54: New Models for Human and Mouse Genetic
The possibility to reprogram somatic human cells will greatly and deeply change genetic approach and allow the development of new tools to study genetics diseases. Indeed, our ability to study human genetic diseases suffers from the lack of valid in vitro models. The latter should (i) be originating from human primary cells, (ii) be able to self-renew for a long time and (iii) be able to differ...
متن کامل